g .
— —— [[
.
Evaluation and validation of connected /
mobility in real open systems beyond

5GS

Experimentation as a Service

User Manual

HORIZON JU Innovation Actions | 101139048 |
ENVELOPE - HORIZON-JU-SNS-2023

Co-funded by N
the European Union

EN = ELOPE

Legal Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or Smart Networks and
Services Joint Undertaking (SNS JU). Neither the European Union nor SNS JU can be held
responsible for them.

Copyright © ENVELOPE Consortium, 2024.

Choose an item.

EN = ELOPE

Table of contents

TABLE OF CONTENTS
1 INTRODUCTION

2 APPLICATION ONBOARDING

2.1 Application Package

2.2 Application Manifest
2.2.1 Metadata Fields
2.2.2 Sources

2.3 Application Descriptor
2.3.1 Metadata

2.3.2 Software Image(s) (swimageDesc)

2.3.3 OS Container Descriptor(s) (osContainerDesc)

3 EXPERIMENT ONBOARDING

4.1 Experiment Package
4.2 Experiment Manifest

4.3 Experiment Descriptor

4 GRAPHICAL USER INTERFACE

4.1 Applications

4.2 Experiments

4.3 Trial Sites Capabilities
4.4 Monitoring

Choose an item.

D

o ~N o O o B~ N A

13

13
13
14

18

18
21
24
26

EN = ELOPE

1 Introduction

The experimentation in the ENVELOPE project is managed by the EaaS module. The user interacts
with the ENVELOPE Portal to perform any operations (e.g., launch experiment, retrieve
information, load applications). It is the only point of access for exploiting the features offered by
the ENVELOPE Platform. The ENVELOPE Portal consists of the Graphical User Interface (GUI)
and interfaces to the back-end components of the EaaS module. The user must be authenticated
before being able to operate on the ENVELOPE Portal.

The user will essentially perform three main actions:

Onboarding an application (see Section 2)
Onboarding an experiment (see Section 3)
Interacting with the Portal to manage an experiment instance

In the first two sections, we will describe the building blocks required to define an application and
an experiment. Finally, we will explain how to interact with the Portal to initiate and manage an
experiment in Section 4.

Choose an item.

EN = ELOPE

2 Application Onboarding

The applications are used to compose a vertical service (i.e., a chained set of applications) to
experiment in the ENVELOPE Platform.

Application Onboarding consists of uploading a single ZIP file representing the application and all
related information. The contents of this ZIP file are referred to as the Application Package. The
user can provide an arbitrary number of files (see example), and these files may eventually be used
by the orchestrator to deploy the application.

An Application is the object instantiated from an Application Package. The Application Descriptor
and its constituent Virtual Deployment Units (VDUs) are the descriptor objects used to instantiate
the Application (see Section 3.3).

When defining an Application, the user must specify the name of the application, it will referred to
as: <application-name>

2.1 Application Package

An Application Package is the smallest object able to be onboarded. It contains all the information
related to a single application in terms of artifacts and descriptor. Two specific files are mandatory
and must be named <application-name>.mf and <application-name>.yaml. These represent,
respectively, the manifest of the package and the descriptor of the application.

(e moomo== NginxApplication.mf
[NginxApplication.yaml
lemmem - - Artifacts

R app-nginx-0.1.0.tgz

2.2 Application Manifest

An Application Manifest (<application-name>.mf) provides metadata about the application,
including its version, compatibility information, and a list of files that make up the package. It is the
first file to be parsed when processing the package and is considered the entry point that enables
the system to interpret the contents of the package.

It consist of two block, one is the metadata fields where the application package metadata are
listed, the second block consist a list of all constituent file you want to be onboarded.

2.2.1 Metadata Fields

All manifest metadata lives under the top-level metadata: key.

Name Description Example

Choose an item.

4

EN = ELOPE

appd_id A unique identifier for this | nginx-appd-001
application descriptor.

app_product_name A human-readable name for | NginxApplication
your application. <application-
name>

app_provider_id The UUID of the organization | 123e4567-e89b-12d3-a456-
or provider publishing this 426614174000
descriptor.

app_software_version The version tag of the | 1.0.0
application image or code
itself.

app_package_version The version of this descriptor | 1.0

package (so you can bump it
independently of the
software).
app_release_date_time The exact release timestamp | 2017-01-01T710:00:00+03:00
of this package, in ISO-8601
format with timezone.
appm_info Application-Management etsiappm:v2.3.1,0:myGreatAp
(APPM) metadata string(s), | pm-1

often including the APPM
schema version and a custom

tag.
compatible_specification_v | A comma-separated list of 2.7.1,3.1.1
ersions Application-Descriptor

specification versions that this
package supports.

Tip: Always update app_release _date time when you publish a new package, and append any
new compatible spec versions to compatible specification_versions.

metadata:

appd_id: nginx-appd-001

app_product name: NginxApplication

app_provider id: 123e4567-e89b-12d3-a456-426614174000
app_software version: 1.0.0

app package version: 1.0

app_release date time: 2017-01-01T10:00:00+03:00
appm_info: etsiappm:v2.3.1,0:myGreatAppm-1

compatible specification versions: 2.7.1,3.1.1

2.2.2 Sources

List every file that must accompany this manifest. Order is not strict, but including the manifest first
is conventional.

Choose an item.

EN = ELOPE

Source: <application- | The manifest itself. Source: NginxApplication.mf
name>.mf
Source: <application- | The main Application | Source:
name>.yaml Descriptor. NginxApplication.yaml
Source: <file-location> Any artifacts or other bundles | Source:
in this package. Artifacts/MCIOPs/app-nginx-
0.1.0.tgz

Tip: If your descriptor relies on multiple artifact packages (scripts, Helm charts, etc.), list each
under its own Source: line.

Source: NginxApplication.mf
Source: NginxApplication.yaml
Source: Artifacts/MCIOPs/app-nginx-0.1.0.tgz

2.3 Application Descriptor

An Application Descriptor is a YAML template that lets you define all the metadata, deployment
parameters, and interfaces for an application you want to deploy. This manual will help you:

Understand each top-level section of the descriptor.
Know which fields are mandatory vs. optional.

Write your own descriptor by modifying the example.

2.3.1 Metadata

Identifies the application uniquely and provides versioning info.

appdid A unique identifier for this | nginx-appd-001
application descriptor.

appdExtinvariantld nginx-appd-extinv-001

appProvider The UUID of the organization | 123e4567-e89b-12d3-a456-
or provider publishing this 426614174000
descriptor.

appProductName A human-readable name for | NginxApplication
your application. <application-
name>

appSoftwareVersion The version tag of the 1.0.0
application image or code
itself.

appdVersion The version of this descriptor | 1.0
package (so you can bump it

Choose an item.

EN = ELOPE

independently of the
software).

appminfo Application-Management Generic-ApplicationM
(APPM) metadata string(s),
often including the APPM
schema version and a custom
tag.

Tip: Choose appdld and appdExtinvariantld using your organization’s naming conventions.

appdId: nginx-appd-001
appdExtInvariantId: nginx-appd-extinv-001
appProvider: 123e4567-e89b-12d3-a456-426614174000
appProductName: NginxApplication
appSoftwareVersion: 1.0.0
appdVersion: "1.0"
appmInfo:

- Generic-ApplicationM

2.3.2 Software Image(s) (swimageDesc)
Defines one or more container or VM images.

Each entry defines one image your application uses.

id The identifier of this software | nginx_image_id
image

name The name of this software nginx
image.

version The version of this software | latest
image.

swimage This is a reference to the nginx

actual software image. The
reference can be relative to
the root of the Application
Package or can be a URL.

supportedVirtualisationEnvi | Specifies the virtualisation | docker

roment environments (e.g. hypervisor)
compatible with this software
image.
Tip:

Add multiple images if your app has frontend/backend containers.

Ensure each id is unique.

Choose an item.

EN = ELOPE

2.3.3 OS Container Descriptor(s) (osContainerDesc)

Specifies resource

requirements

and links

Describes resource needs for containers or VMs.

osContainerDescld

this
this

Unique identifier of
OsContainerDesc in
descriptor.

to software images.

nginx_container_desc _id

the container can maximally
use

name Human readable name of this | Nginx Desc
OS container.
description Human readable description | Nginx Container Descriptor
of this OS container.
requestedCpuResource Number of CPU resources | 1
requested for the container
requestedMemoryResource | Amount of memory resources | 586
requested for the container
cpuResourceLimit Number of CPU resources the | 1
container can maximally use
memoryResourceLimit Amount of memory resources = 1024

swimageDesc

Describes the software image
realizing this OS container.

nginx_image_id

To customize:

Adjust CPU/memory to your app’s footprint.

Link to the correct swimageDesc.id.

swimageDesc:

- id: nginx image id
name: nginx
version: latest
swImage: nginx

supportedVirtualisationEnviroment:

- docker
osContainerDesc:

- osContainerDescId: nginx_ container desc id

name: Nginx Desc
description:
requestedCpuResources: 1

Nginx Container Descriptor

requestedMemoryResource: 586 #e.g in MB

cpuResourcelLimit: 1
memoryResourceLimit: 1024
swImageDesc: nginx image id

Virtual Deployment Unit(s) (vdu)

Groups containers/VMs into logical units.

Choose an item.

EN = ELOPE

vduld Unique identifier of this Vdu in | VDU_nginx
this descriptor.
name Human readable name of the | Nginx Desc
Vdu.
description Human readable description | Nginx Container Descriptor

of the Vdu.

mcioldentificationData

Name and type of the MCIO
that realizes this VDU.

helm

osContainerDesc

Describes CPU, memory
requirements
and limits, and software

images of the
OS Containers realizing this
Vdu.

nginx_container_desc _id

vdu:
- vduId: VDU nginx
name: Nginx-VDU

description: "Default VDU hosting Nginx web server"

mcioIldentificationData:

osContainerDesc:

helm

- nginx_container desc id

Deployment Flavours (deploymentFlavour)

Describes a specific deployment version of a Application in terms of sizing/performance profiles
and lifecycle parameters. Defines “flavours” (e.g., small, medium, large) with scaling and lifecycle

settings.

flavourld Identifier of this DF within this | df_nginx
descriptor.
description Human readable description | Default Deployment flavour for
of the DF. Nginx
vduProfile Describes additional = See below
instantiation data for the VDUs
used in this flavour.
instantiationLevel Describes the various levels of | See below

resources that can be used to
instantiate the Application
using this flavour

To customize:

Define multiple flavours for different load scenarios.

Add or remove parameters under appLcmOperationsConfiguration.

Vdu Profile

Choose an item.

EN = ELOPE

vduld Uniquely references a VDU. VDU_nginx
minNumberOfinstance Minimum number of instances | 1
based on this VDU
maxNumberOfinstance Maximum number of | 4
instances based on this VDU

Instantiation Level

levelld Uniquely identifies a level | default_level
within the DF.
description Human readable description | Default instanton level
of the level.
vduLevel Indicates the number of See below
instances of this VDU
to deploy for this level.

MciopProfile

mciopld Identifies the MCIOP in the | Artifacts/MCIOPs/app-nginx-
Application package. 0.1.0.tgz

associatedVdu List of VDUs which are VDU_nginx

associated to this MCIOP and
which are deployed using this
MCIOP.

deploymentFlavour:
- flavourId: df nginx
description: Default Deployment flavour for Nginx
vduProfile:
- vduId: VDU nginx
minNumberOfInstances: 1
maxNumberOfInstances: 4

istantiationLevel:
- levelld: default level
description: Default istantiation level
vduLevel:
- vduId: VDU nginx
number0fInstances: 1

mciopProfile:
- mciopId: Artifacts/MCIOPs/app-nginx-0.1.0.tgz
associatedVdu:
- VDU nginx

External Interfaces (appExtCpd)

cpdid dentifier of this Cpd | ext
information element.

Choose an item. 10

EN = ELOPE

virtualCpd \ Nginx80_connection_point
Lists connection points exposed externally. Exposes connection points to the outside world.

Virtual Connection Points (virtualCpd)

Defines network interfaces within the descriptor. Defines network interfaces that map to
containers/VDUs.

cpdid Identifier of this Cpd | nginx80_connection_point
information element.

layerProtocol Specifies which protocol the | IPV4
CP uses for connectivity IPV6
purposes.

description Provides human-readable | Connection point to nginx
information on the purpose of | service on port 80
the CP

vdu References the VDU(s) which | VDU _nginx
implement this service.

additionalServiceData Additional service @ portData: (seeBelow)
identification data of the
VirtualCp exposed

To customize:
Use portConfigurable: true if you want users to pick a different port.

Add multiple portData entries for multi-port services.

AdditionalServiceData

name The name of the port exposed | nginx_port
by the CP.

protocol The L4 protocol for this port | TCP
exposed by the CP.

port The L4 port number exposed | 80
by the CP.

portConfiguration Specifies whether the port | false
attribute value is allowed to be
configurable.

Choose an item.

11

EN = ELOPE

appExtCpd:
- cpdId: ext
virtualCpd: nginx8@ connection point

virtualCpd:
- cpdId: nginx80 connection point
layerProtocol:
- IPV4
- IPV6
description: connection point to nginx service on port 80
vdu:
- VDU nginx
additionalServiceData:
- portData:
- name: nginx port
protocol: TCP
port: 80
portConfigurable: false

Choose an item. 12

EN = ELOPE

3 Experiment Onboarding

4.1 Experiment Package

An Experiment Package contains all the information related to a single experiment in terms of
artifacts and descriptor.

4.2 Experiment Manifest

The Experiment Descriptor Manifest (.mf) is a lightweight YAML-style file that describes:

Who created the experiment descriptor.

Which version of the descriptor schema it follows.

When it was released.

Which other files (e.g., the main YAML descriptor) are part of this experiment package.

Which specification versions it's compatible with.

This manifest makes it easy for tooling and users to check compatibility before attempting to deploy
or process the descriptor. And is the file used by the module to parse your package

All manifest metadata lives under the top-level metadata: key. In your MyExperiment.mf, it looks

like:
Field Details
experimentd_designer Who authored or maintains | ExampleDesigner

this descriptor (e.g., a person,
team, or organization).

experimentd_invariant_id A stable machine-friendly ID | my_experiment
that never changes, even if
you bump the manifest

version.
experimentd_name A human-readable title shown | MyExperiment
in Uls or logs
experimentd_file_structure | The version of the manifest 1.0
_version schema itself. Increment this if
you ever change the manifest
format.
experimentd_release_date_ | When this descriptor version | 2018-04-08T10:00+08:00
time was released, in 1SO-8601

format (including timezone).
compatible_specification_v = Which experiment-descriptor | 2.7.1,3.1.1,4.3.1
ersioexperiment specification versions this

Choose an item.

13

EN = ELOPE

manifest supports,
separated.

comma-

Tip: Always update experimentd_release_date time when you publish a new descriptor version,
and add any new compatible spec versions here.

Sources

Below the metadata block, list each file that constitutes this experiment package. In your example:

Source: <experiment- | The manifest itself. Source: MyExperiment.mf
name>.mf

Source: <experiment- The main Experiment | Source: MyExperiment.yaml
name>.yaml Descriptor.

Each Source: line names a file that must accompany the manifest.

Ordering is not critical, but including the manifest itself first helps humans and tools verify
integrity before loading the descriptor.

Tip: If your experiment descriptor splits across multiple files (e.g., separate network and compute
fragments), list each here.

metadata:

experimentd designer: ExampleDesigner

experimentd invariant_id: my_ experiment

experimentd name: My Experiment
experimentd file structure version: 1.0
experimentd release date time: 2018-04-08T10:00+08:00
compatible specification versioexperiment: 2.7.1,3.1.1,4.3.1

Source: MyExperiment.mf
Source: MyExperiment.yaml

4.3 Experiment Descriptor

An Experiment Descriptor is a YAML template that lets you define a multi-application experiment,
including which application descriptors to include, how many instances to run, and security settings.
This manual will help you:

Understand each top-level section.

Identify mandatory vs. optional fields.

Create your own descriptor by modifying the provided example.

Choose an item.

14

EN = ELOPE

Identity & Designer

Use your own naming convention for experimentdldentifier and experimentdinvariantld to ensure
uniqueness.

Included Applications (appdid)
List the Application Descriptor IDs that this experiment will deploy:
Each entry must match a valid appdld from your Application list.

You can include as many applications as needed.

experimentdldentifier Identifier of this descriptor | my_experiment_1
information element.

designer Specifies the designer of this | ExampleDesigner
experiment.

experimentdName Provides the human readable | My Experiment
name of the experiment

experimentinvariantld Identifies a descriptor in a | my_experiment
version independent manner.

appdid References the application - nginx-appd-001
descriptors of this experiment. - busybox-appd-001

Experiment Deployment Flavours (experimentDf)

Defines one or more Deployment Flavours—similar to “profiles”—that group application profiles
under a flavour key.

experimentDfld unique within this descriptor. df_my_experiment

flavourKey arbitrary tag (e.g., “small”, | string
“test”).

appProfile List of app profile See below

AppProfile

appProfileld local reference for the profile. | experiment_nginx_profile_1

appdid link to the original application = nginx-appd-001
descriptor.

appdExtinvariantid link to the original application | nginx-appd-extinv-001
descriptor.

flavourld refer to the Application | df _nginx
Descriptor own flavours.

instantiationLevel refer to the Application default_level
Descriptor own level.

Choose an item.

15

EN = ELOPE

minNumberOfinstances control scaling bounds. 1
maxNumberOfinstance control scaling bounds. 1

Tip: Add additional experimentDf blocks if you need multiple experiment-wide flavours.

Experiment Instantiation Levels (experimentinstantionLevel)

Maps profiles to actual instance counts for a given experiment level:

nsLevelld Identifier of this NsLevel | default_experiment_level
information element. It
uniquely identifies an NS level
within the DF.

descriptiorn Human readable description | Simple experiment level
of the Experiment level
appToLevelMapping Specifies the profile of the | See below
Applications involved in this
Experiment level and, for each
of them, the required number
of instances.

nsLevelld: e.g., “default”, “scale-out”, etc.

appToLevelMapping: ties each appProfileld to an exact replica count.

appProfileld References the profile to be | experiment_nginx_profile_1
used for a VNF involved in an
NS level.

numberOfinstance Specifies the number of VNF | 1
instances required for an NS
level.

Tip: Define multiple levels (e.g., “stress_test level’) to switch between configurations.

Security

Provides a signature section to prevent tampering

signature cryptographic signature of the = <string>
descriptor.

algorithm SHA256

certificate reference to a certificate
(optional).

Choose an item. 16

EN— ELOPE

experimentdIdentifier: my experiment 1
designer: ExampleDesigner
experimentdName: My Experiment
experimentdInvariantId: my experiment
appdid:
- nginx-appd-001
- busybox-appd-0081
experimentDf:
- experimentDfId: df my experiment
flavourKey: string
appProfile:

- appProfileld: experiment nginx profile 1
appdId: nginx-appd-001
appdExtInvariantId: nginx-appd-extinv-801
flavourId: df_nginx
instantiationLevel: default level
minNumberOfInstances: 1
maxNumberOfInstance: 1

- appProfileld: experiment_ busybox profile 1
appdId: busybox-appd-081
appdExtInvariantId: busybox-appd-extinv-081
flavourId: df_busybox
instantiationLevel: default level
minNumberOfInstances: 1
maxNumberOfInstance: 1

experimentInstantionLevel:

- nsLevelld: default experiment_level
description: simple experiment level
appToLevelMapping:

- appProfileId: experiment nginx profile 1
numberofInstances: 1
- appProfileId: experiment busybox profile 1
number0fInstances: 1
security:
signature: string
algorithm: string
certificate: not specified @ to 1

Choose an item. 17

EN = ELOPE

4 Graphical User Interface

This section provides an overview about the steps that an experimenter has to perform for
interacting with the ENVELOPE Portal (i.e., the EaaS front-end).

4.1 Applications

The following steps illustrates the procedure for managing the applications that are part of an
experiment.

The screen is horizontally divided between an upper part for uploading and onboarding, and a
lower area for retrieving and visualizing existing created or on-boarded application packages.

Upiad New Application

Applications

Application 1 Application 2
State: On boarded hd L State: On basrded

Application 3 Application 4
® § ® §
State Drvboarded Stste Onrboarded

Application &
State: On boarded PU| e crote

EN —~ELOPE

Choose an item. 18

EN = ELOPE

1. Upload local zip file: click “Choose a file” and select from your filesystem the zip file for your
application. Alternatively, drag & drop it into the light blue dotted border area.

~ @ hplications x|+
€ 5 @ (@ salhosa2i0/aplisations & & O @ Finshupdite |

Applications

Upload New Application (| O
Applications 3

Monitoring

Applications
Seecrly spatstions m s eer ()
P O U] ey OC
= OO i o)
s o et o

EN = ELOPE

2. On-boarding an application package: a new Ul dashboard shows up to manage the task.
2.1. Click “Create” to request the creation of a new application package.

Note: this Step does not involve the zip file uploaded in Step 1. It just initializes an
empty application package, whose content may be uploaded later.

v @ Applications x *
A% O & @ reshupdste |

« C O localhosta200jepplications

Applications

Upload New Application O
Applications oo

Name: ApplicationZip.zip On-boarding State: Not Crested

2 Size: 4KB

Create pubic spplcation packsge

Applications
See only spplcations rom this user (@)
Application 1 Application 2
State: Created. ted L State: On-boarded o, L
Application 3 =~ Application 4 EN ELQPE
State: Onbosrded Stote rested

Choose an item. 19

EN = ELOPE

2.2. After 2.1 is completed:

2.2.1. “Upload” button becomes enabled, “Create” button becomes disabled.
2.2.2. “On-boarding State” info tab switches to “Created”.

2.2.3. A newly created package appears in the list of stored application packages.

2.2.4. Click the “Upload” button to upload the application package created in 2.1.

Note: The content of the zip file uploaded in Step 1 will be used for uploading the
content of the application package created in Step 2.1.

2.3 It's possible to "Delete” the zip file from client and its associated application package.

v | © apsleations

© O loeahasaaaojsplicatiens

Applications

Upload New Applicatien

Name: ApPIBUIONZIp.zip On-boarding State: Created

Size: 4 KB

Applications

®

EN = EbQPE

Choose an item.

20

EN = ELOPE

2.4. After 2.2.4 is completed:

2.4.1. “Upload” and “Create” buttons disappear.
2.4.2. “On-boarding State” info tab switches to “On-boarded”.

Note: the system will take a few seconds for on-boarding the package.
Right after 2.2.4, the package will transition through the following states -
“Created” — “Uploading” — “Processing” - before finally settling on “On-
boarded.” This final state appears immediately after the system completes
the on-boarding process.

2.4.3 Can start again from Step 1.

v | © apsleations

C O lcalhemazoopletin a & 0 & @ rshupdate |

Applications

a Upload New Application (O
)
Applications. L

Trial s H
Cope H

T Name: ApplicationZip.zip On-boarding State: On-boarded
Monitoring

Size: 4 KB 241

Applications

aaaaaaaaaa

&&&&&&&&&&

EN — ELOPE

4.2 Experiments

The screen is horizontally divided between an upper part for uploading and onboarding an
experiment descriptor, and a lower area for retrieving and visualizing existing created, on-boarded
and/or instantiated experiments (lifecycle).

In the lower area, each experiment descriptor is represented as an expansible card; once
expanded, it shows its created instances, with buttons to terminate each of those that are
instantiated, or to instantiate those which are not.

Choose an item.

21

EN = ELOPE

~ @ Dxperiments x MY Cid sk | Angular Mater %+

€ + ¢ |© bulhosazkervies @ % O @ rnshupdate

Applications

Upload New Experimant [©)
Applications. -

Experiments Lifecycle

= Experiment 1 0@ + s N
Instance #1234 c_
Instance #9123 © o
A
Experiment 2 0@ + oo v
4ing
@ EN — ELOPE
Experiment 4 i o £

1. The creation and on-boarding process is the same as illustrated in Paragraph 2.1
Applications. Following steps must be performed sequentially:
1.1. Locally upload a zip file containing the desired experiment to onboard.

1.2. Tap “Create” to create an Experiment Descriptor.

1.3. Tap “Upload” to upload Experiment Descriptor Archive with the content of the
zip file.

v | @ Bxperiments. ® Y Grid st | Anquisrmater X &

e C (O lecalbesaronsenices o & 0 @ Fashopdate |

Applications

i Upload New Experiment ©
Applications. !

. Name: ExperimentZip.zip On-Boarding State: Not Created
Monitoring

Size: 4KB

Experiments Lifecycle
Experiment 1 0@ + cmna v

Experiment 2 @) + o o

EN = ELOPE

Choose an item. 22

EN = ELOPE

2. The experiment now is shown listed in the lower screen area.
2.1. Click “Create instance” to create an Experiment identifier.

© | @ Dperiments XY Gedlat | Angular ater %+
€ 2 € (O lahossmobovices

& % f & @ Fashupdate

Applications

Upload New Experimant [o)
Applications !

Expe
cap
= Name: ExperimentZip. zip On-Boarding State: On-boarded
Monitoring
Size: 4 KB
Experiments Lifecycle
& ExperimentZip 1e) + .
Onvboards -
A
Experiment 1 " e + Create instance -
% Experiment 2 B[@) + croteimtue

EN —~ELOPE

3. After 2.1:

3.1. New experiment instance is created and visible

3.2. Click “Instantiate” button to run the experiment instance

| ® experiments x4 e
€ ¢ (O localhasmaznservices

A % P& @ Amshupdate |

Applications

Upload New Experiment O
Applications !

Experiment:
Chaca
i
Capabilities
r Narme: EXperimentzip.zip
Monitoring

On-Boareing Stale: On-bosrded

Size: 4KB

Experiments Lifecycle

ExperimentZip e + -
1 inatonc
T Experiment 1 e + v
EN = ELOPE
Experiment 2 B ® + oneen

Choose an item. 23

EN = ELOPE

4. After 3.2:

4.1. “Terminate” button is available. Click to stop the instance.

v | @ experiments

« C © localhosA200services ax 0

& @ Fshupdste |

Applications
Upload New Experiment
Applications. !
Experiment:
Chaoe
Name: Experimentzip.zip OnBoarding State: Orr-boarded
Monitoring
Size: 4 KB

Experiments Lifecycle

ExperimentZip 0 ®) + ceamn -

Experiment 1 B @ 4 cresema ~

EN~ELOPE

Experiment 2 0@ + o -

A

4.3 Trial Sites Capabilities

This section provides information about ENVELOPE APIs specification, Computing Nodes,
Network Resources and Zones.

v @ Tralsites x|+

€ 3 @ O lacathestadn

& ¢ £} @ NewChrome avallable §

Trial sites capabilities
]
Applications
- S
Experiments 2> ENVELOPE APIs v
i
Cay ofe Camputing nodes ~
Menitoring
N Network resources
3 Zones

EN = ELOPE

Choose an item. 24

EN = ELOPE

The ENVELOPE APIs specifications supported can be retrieved and visualized using Swagger.

v @ Trial Sites x @ ENVELOPE-T3.1-User x + - W R

€ 5 C O localhost:4200trial-sites aQ % © @ Newchromeavailable }

Trial sites capabilities

Applications

Expecsmyontn ¢ ENVELOPE APIs

Trial Site:

Capabilities Quality on Demand (QoD) APIs
v they allow vertical applications to request adaptation of QoS parameters for specified PDU sessions to guarantee their network requirements, e.g., minimum requested bandwidth for the uplink or downlink.

Performance metrics APIs

the retrleval of Information about device performance metrics is provided as functionality by these APls.

Monitoring Predictive QoS (pQoS) APIs
deliver analytics to vertical services (via Al/ML model inference), enabling the prediction of changes or degradation in network-level or service-level QoS parameters

Device Location APls
these APl allow the retrieval of geographical information of a device. Provided functionalities can include the verification of a device location, the retrieval of the location of a device and geofencing information (i.e., notification of devices entering of le..

Edge cloud APIs
they allow the deployment and management of applications on compute resources, and they provide Information to vertical applications about the closest edge cloud server given the current device location.

g&g Computing nodes

N Network resources EN = ELOPE

v @ Trial Sites x @ ENVELOPE-T3.1-User x + - R

€ 5 C O localhost:4200trial-sites aQ % © @ Newchromeavailable }

assetslyaml/api_example.yaml

This API provides the consumer with the ability to verily the location of 3 device.

Introduction

API consumers are able (o verify whether the location of certain user device s within the area specified. Currently the only area supported as Input s a circle determined by a set of
coordinates (lalitude and longitude) and some expected accuracy (radius).

« If the provided area is out of the operator's concaos 1 k13 oot supprie o ey eacn: an exor [GEE/LAEAFTEIC Y ERIEECA O AR ENTIOT CHVERY) wh be e
« Legal restrictions regarding privacy, of other r or implementation issues, may force the operator to set restrictions 1o the provided area, such as Sefting a minimum value to the
accapiad rchis. 1 theks casen, o aror (A2 uxnxau VERIFICATION. mvmo AREA will be retumed and the error message will refer to the reason of the limitation.

The verification " ¢s abiiity and 10 locate the device at the requested area.

« It the networks estmation of the device's location is fuly contained within the requested area, the verification resutis TRUE
« I he networks estmation of the device's location does not verlap with the requested area at all, the verification resultis FALSE

« It the network's estimation of the device's location partially overlaps with the requested area, or It fully contains the requested area (because it is larger), the resultis PARTIAL . In this
case,a match_rate s inciuded In the response, indicating an estimation of the iikeinood of the match in percen.

Lastly, the network may not be able to locate the device. In this case, the verification result s UNKNOWN

The ciient may optionaly include a_maxAge ndication. If he location Information known 1o the serve s older than the specified maxAge. Of NOLKNowWn at al, an erfor with code
422 LOCATION_VERIFICATION.UNABLE_TO_FULFILL MAX_AGE Is sent back, ndependently of the verficaion result.

lastLocationTime val be always included In a SUCCeSS response unless there is no historical location Information avasiable for the device. In this case. UNKNOWN will be
retuned vithout LastLocationTime

Location Verfication could be useful in scenarios such as:

Fraud protection, to ensure a given user is located in the location area claimed for financial transactions.
Venfication of GPS coordinates reported by the app on a device, to ensure the GPS was not faked, e.g. for content delivery with regional restrictions.
Contextual-based agvertising, to trigger advertising after veritying the device is in the area of interest.

‘Smart mobilty (venicle / bikes renting). to confirm the Iocation of the device and the location of the vehicie/bike o guarantee they are rented correctly.

Relevant terms and definitions

Choose an item. 25

EN = ELOPE

The trial site’s metrics and experimentation metrics are collected through Prometheus and they can
be visualized in a Grafana dashboard.

An example of monitoring dashboard is shown below. In this case, the visualisation focuses on
network metrics, providing panels for packet forwarding and drop rates, as well as session and IP
pool utilisation, or system resource usage.

ons & IP Assignment

Network Traffic

DNN Monitoring

Dropped bytes

16.6 B

ons & IP Assignment
> Network Traffic
DNN Monitoring

DNNs

Choose an item. 26

