
 

 

HORIZON JU Innovation Actions | 101139048 | 
ENVELOPE - HORIZON-JU-SNS-2023 

 

Evaluation and validation of connected 

mobility in real open systems beyond 

5GS 

 

Experimentation as a Service 

User Manual 
 
  



 

 

Choose an item. I 

Legal Disclaimer 

Co-funded by the European Union. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or Smart Networks and 

Services Joint Undertaking (SNS JU). Neither the European Union nor SNS JU can be held 

responsible for them. 

Copyright © ENVELOPE Consortium, 2024. 

  



 

 

Choose an item. II 

Table of contents 

TABLE OF CONTENTS II 

1 INTRODUCTION 3 

2 APPLICATION ONBOARDING 4 

2.1 Application Package 4 

2.2 Application Manifest 4 

2.2.1 Metadata Fields 4 

2.2.2 Sources 5 

2.3 Application Descriptor 6 

2.3.1 Metadata 6 

2.3.2 Software Image(s) (swImageDesc) 7 

2.3.3 OS Container Descriptor(s) (osContainerDesc) 8 

3 EXPERIMENT ONBOARDING 13 

4.1 Experiment Package 13 

4.2 Experiment Manifest 13 

4.3 Experiment Descriptor 14 

4 GRAPHICAL USER INTERFACE 18 

4.1 Applications 18 

4.2 Experiments 21 

4.3 Trial Sites Capabilities 24 

4.4 Monitoring 26 

 

 

  



 

 

Choose an item. 3 

1 Introduction 

The experimentation in the ENVELOPE project is managed by the EaaS module. The user interacts 

with the ENVELOPE Portal to perform any operations (e.g., launch experiment, retrieve 

information, load applications). It is the only point of access for exploiting the features offered by 

the ENVELOPE Platform. The ENVELOPE Portal consists of the Graphical User Interface (GUI) 

and interfaces to the back-end components of the EaaS module. The user must be authenticated 

before being able to operate on the ENVELOPE Portal. 

The user will essentially perform three main actions: 

• Onboarding an application (see Section 2) 

• Onboarding an experiment (see Section 3) 

• Interacting with the Portal to manage an experiment instance 

  

In the first two sections, we will describe the building blocks required to define an application and 

an experiment. Finally, we will explain how to interact with the Portal to initiate and manage an 

experiment in Section 4. 

 



 

 

Choose an item. 4 

2 Application Onboarding 

The applications are used to compose a vertical service (i.e., a chained set of applications) to 

experiment in the ENVELOPE Platform. 

Application Onboarding consists of uploading a single ZIP file representing the application and all 

related information. The contents of this ZIP file are referred to as the Application Package. The 

user can provide an arbitrary number of files (see example), and these files may eventually be used 

by the orchestrator to deploy the application. 

An Application is the object instantiated from an Application Package. The Application Descriptor 

and its constituent Virtual Deployment Units (VDUs) are the descriptor objects used to instantiate 

the Application (see Section 3.3). 

When defining an Application, the user must specify the name of the application, it will referred to 

as: <application-name> 

 

2.1 Application Package 

An Application Package is the smallest object able to be onboarded. It contains all the information 

related to a single application in terms of artifacts and descriptor. Two specific files are mandatory 

and must be named <application-name>.mf and <application-name>.yaml. These represent, 

respectively, the manifest of the package and the descriptor of the application. 

 

 

2.2 Application Manifest 

An Application Manifest (<application-name>.mf) provides metadata about the application, 

including its version, compatibility information, and a list of files that make up the package. It is the 

first file to be parsed when processing the package and is considered the entry point that enables 

the system to interpret the contents of the package. 

It consist of two block, one is the metadata fields where the application package metadata are 

listed, the second block consist a list of all constituent file you want to be onboarded. 

 

2.2.1 Metadata Fields 

All manifest metadata lives under the top-level metadata: key. 

Name Description Example 



 

 

Choose an item. 5 

appd_id A unique identifier for this 
application descriptor. 

nginx-appd-001 

app_product_name A human-readable name for 
your application. <application-
name> 

NginxApplication 

app_provider_id The UUID of the organization 
or provider publishing this 
descriptor. 

123e4567-e89b-12d3-a456-
426614174000 

app_software_version The version tag of the 
application image or code 
itself. 

1.0.0 

app_package_version The version of this descriptor 
package (so you can bump it 
independently of the 
software). 

1.0 

app_release_date_time The exact release timestamp 
of this package, in ISO-8601 
format with timezone. 

2017-01-01T10:00:00+03:00 

appm_info Application-Management 
(APPM) metadata string(s), 
often including the APPM 
schema version and a custom 
tag. 

etsiappm:v2.3.1,0:myGreatAp
pm-1 

compatible_specification_v
ersions 

A comma-separated list of 
Application-Descriptor 
specification versions that this 
package supports. 

2.7.1,3.1.1 

 

Tip: Always update app_release_date_time when you publish a new package, and append any 

new compatible spec versions to compatible_specification_versions. 

 

 
 

2.2.2 Sources 

List every file that must accompany this manifest. Order is not strict, but including the manifest first 

is conventional. 

 

Sources Description Example 



 

 

Choose an item. 6 

Source: <application-
name>.mf 

The manifest itself. Source: NginxApplication.mf 

Source: <application-
name>.yaml 

The main Application 
Descriptor. 
 

Source: 
NginxApplication.yaml 

Source: <file-location> Any artifacts or other bundles 
in this package. 

Source: 
Artifacts/MCIOPs/app-nginx-
0.1.0.tgz 

  

    Tip: If your descriptor relies on multiple artifact packages (scripts, Helm charts, etc.), list each 

under its own Source: line. 

 

 

 

2.3 Application Descriptor 

 

An Application Descriptor is a YAML template that lets you define all the metadata, deployment 

parameters, and interfaces for an application you want to deploy. This manual will help you: 

    Understand each top-level section of the descriptor. 

    Know which fields are mandatory vs. optional. 

    Write your own descriptor by modifying the example. 

 

2.3.1 Metadata 

Identifies the application uniquely and provides versioning info. 

Name Description Example 

appdId A unique identifier for this 
application descriptor. 

nginx-appd-001 

appdExtInvariantId  nginx-appd-extinv-001 

appProvider The UUID of the organization 
or provider publishing this 
descriptor. 

123e4567-e89b-12d3-a456-
426614174000 

appProductName A human-readable name for 
your application. <application-
name> 

NginxApplication 

appSoftwareVersion The version tag of the 
application image or code 
itself. 

1.0.0 

appdVersion The version of this descriptor 
package (so you can bump it 

1.0 



 

 

Choose an item. 7 

independently of the 
software). 

appmInfo Application-Management 
(APPM) metadata string(s), 
often including the APPM 
schema version and a custom 
tag. 

Generic-ApplicationM 

 

Tip: Choose appdId and appdExtInvariantId using your organization’s naming conventions. 

 

 

 

2.3.2 Software Image(s) (swImageDesc) 

Defines one or more container or VM images.  

Each entry defines one image your application uses. 

Name Description Example 

id The identifier of this software 
image 

nginx_image_id 

name The name of this software 
image. 

nginx 

version The version of this software 
image. 

latest 

swImage This is a reference to the 
actual software image. The 
reference can be relative to 
the root of the Application 
Package or can be a URL. 

nginx 

supportedVirtualisationEnvi
roment 

Specifies the virtualisation 
environments (e.g. hypervisor) 
compatible with this software 
image. 

docker 

 

Tip: 

 Add multiple images if your app has frontend/backend containers. 

 Ensure each id is unique. 

 



 

 

Choose an item. 8 

2.3.3 OS Container Descriptor(s) (osContainerDesc) 

Specifies resource requirements and links to software images. 

Describes resource needs for containers or VMs. 

Name Description Example 

osContainerDescId Unique identifier of this 
OsContainerDesc in this 
descriptor. 

nginx_container_desc_id 

name Human readable name of this 
OS container. 

Nginx Desc 

description Human readable description 
of this OS container. 

Nginx Container Descriptor 

requestedCpuResource Number of CPU resources 
requested for the container 

1 

requestedMemoryResource Amount of memory resources 
requested for the container 

586 

cpuResourceLimit Number of CPU resources the 
container can maximally use 

1 

memoryResourceLimit Amount of memory resources 
the container can maximally 
use 

1024 

swImageDesc Describes the software image 
realizing this OS container. 

nginx_image_id 

 

To customize: 

 Adjust CPU/memory to your app’s footprint. 

 Link to the correct swImageDesc.id. 

 

 

 

Virtual Deployment Unit(s) (vdu) 

Groups containers/VMs into logical units. 



 

 

Choose an item. 9 

Name Description Example 

vduId Unique identifier of this Vdu in 
this descriptor. 

VDU_nginx 

name Human readable name of the 
Vdu. 

Nginx Desc 

description Human readable description 
of the Vdu. 

Nginx Container Descriptor 

mcioIdentificationData Name and type of the MCIO 
that realizes this VDU. 

helm 

osContainerDesc Describes CPU, memory 
requirements 
and limits, and software 
images of the 
OS Containers realizing this 
Vdu. 

nginx_container_desc_id 

 

  

Deployment Flavours (deploymentFlavour) 

Describes a specific deployment version of a Application in terms of sizing/performance profiles 

and lifecycle parameters. Defines “flavours” (e.g., small, medium, large) with scaling and lifecycle 

settings. 

 

Name Description Example 

flavourId Identifier of this DF within this 
descriptor. 

df_nginx 

description Human readable description 
of the DF. 

Default Deployment flavour for 
Nginx 

vduProfile Describes additional 
instantiation data for the VDUs 
used in this flavour. 

See below 

instantiationLevel Describes the various levels of 
resources that can be used to 
instantiate the Application 
using this flavour 

See below 

To customize: 

 Define multiple flavours for different load scenarios. 

 Add or remove parameters under appLcmOperationsConfiguration. 

 

Vdu Profile 



 

 

Choose an item. 10 

Name Description Example 

vduId Uniquely references a VDU. VDU_nginx 

minNumberOfInstance Minimum number of instances 
based on this VDU 

1 

maxNumberOfInstance Maximum number of 
instances based on this VDU 

4 

  

Instantiation Level 

Name Description Example 

levelId Uniquely identifies a level 
within the DF. 

default_level 

description Human readable description 
of the level. 

Default instanton level 

vduLevel Indicates the number of 
instances of this VDU 
to deploy for this level. 

See below 

 

MciopProfile 

Name Description Example 

mciopId Identifies the MCIOP in the 
Application package. 

Artifacts/MCIOPs/app-nginx-
0.1.0.tgz 

associatedVdu List of VDUs which are 
associated to this MCIOP and 
which are deployed using this 
MCIOP. 

VDU_nginx 

 

 

External Interfaces (appExtCpd) 

Name Description Example 

cpdId dentifier of this Cpd 
information element. 

ext 



 

 

Choose an item. 11 

virtualCpd  Nginx80_connection_point 

Lists connection points exposed externally. Exposes connection points to the outside world. 

  

Virtual Connection Points (virtualCpd) 

Defines network interfaces within the descriptor. Defines network interfaces that map to 

containers/VDUs. 

 

Name Description Example 

cpdId Identifier of this Cpd 
information element. 

nginx80_connection_point 

layerProtocol Specifies which protocol the 
CP uses for connectivity 
purposes. 

IPV4 
IPV6 

description Provides human-readable 
information on the purpose of 
the CP 

Connection point to nginx 
service on port 80 

vdu References the VDU(s) which 
implement this service. 

VDU_nginx 

additionalServiceData Additional service 
identification data of the 
VirtualCp exposed 
 

portData: (seeBelow) 

To customize: 

 Use portConfigurable: true if you want users to pick a different port. 

 Add multiple portData entries for multi-port services. 

 

AdditionalServiceData 

Name Description Example 

name The name of the port exposed 
by the CP. 

nginx_port 

protocol The L4 protocol for this port 
exposed by the CP. 

TCP 

port The L4 port number exposed 
by the CP. 

80 

portConfiguration Specifies whether the port 
attribute value is allowed to be 
configurable. 

false 

 



 

 

Choose an item. 12 

 

 

 

 

 



 

 

Choose an item. 13 

3 Experiment Onboarding 

4.1 Experiment Package 

An Experiment Package contains all the information related to a single experiment in terms of 

artifacts and descriptor. 

4.2 Experiment Manifest 

The Experiment Descriptor Manifest (.mf) is a lightweight YAML‐style file that describes: 

  

    Who created the experiment descriptor. 

    Which version of the descriptor schema it follows. 

    When it was released. 

    Which other files (e.g., the main YAML descriptor) are part of this experiment package. 

    Which specification versions it’s compatible with. 

  

This manifest makes it easy for tooling and users to check compatibility before attempting to deploy 

or process the descriptor. And is the file used by the module to parse your package 

 

All manifest metadata lives under the top-level metadata: key. In your MyExperiment.mf, it looks 

like: 

Field Details 

Name Description Example 

experimentd_designer Who authored or maintains 
this descriptor (e.g., a person, 
team, or organization). 

ExampleDesigner 

experimentd_invariant_id A stable machine-friendly ID 
that never changes, even if 
you bump the manifest 
version. 

my_experiment 

experimentd_name A human-readable title shown 
in UIs or logs 

MyExperiment 

experimentd_file_structure
_version 

The version of the manifest 
schema itself. Increment this if 
you ever change the manifest 
format. 

1.0 

experimentd_release_date_
time 

When this descriptor version 
was released, in ISO-8601 
format (including timezone). 

2018-04-08T10:00+08:00 

compatible_specification_v
ersioexperiment 

Which experiment-descriptor 
specification versions this 

2.7.1,3.1.1,4.3.1 



 

 

Choose an item. 14 

manifest supports, comma-
separated. 
 

 

Tip: Always update experimentd_release_date_time when you publish a new descriptor version, 

and add any new compatible spec versions here. 

 

Sources 

Below the metadata block, list each file that constitutes this experiment package. In your example: 

Sources Description Example 

Source: <experiment-
name>.mf 

The manifest itself. Source: MyExperiment.mf 

Source: <experiment-
name>.yaml 

The main Experiment 
Descriptor. 
 

Source: MyExperiment.yaml 

 

    Each Source: line names a file that must accompany the manifest. 

    Ordering is not critical, but including the manifest itself first helps humans and tools verify 

integrity before loading the descriptor. 

    Tip: If your experiment descriptor splits across multiple files (e.g., separate network and compute 

fragments), list each here. 

 

 

 

4.3 Experiment Descriptor 

An Experiment Descriptor is a YAML template that lets you define a multi‐application experiment, 

including which application descriptors to include, how many instances to run, and security settings. 

This manual will help you: 

  

    Understand each top‐level section. 

    Identify mandatory vs. optional fields. 

    Create your own descriptor by modifying the provided example. 

 



 

 

Choose an item. 15 

Identity & Designer 

Use your own naming convention for experimentdIdentifier and experimentdInvariantId to ensure 

uniqueness. 

 

Included Applications (appdid) 

List the Application Descriptor IDs that this experiment will deploy: 

Each entry must match a valid appdId from your Application list. 

You can include as many applications as needed. 

 

Name Description Example 

experimentdIdentifier Identifier of this descriptor 
information element. 

my_experiment_1 

designer Specifies the designer of this 
experiment. 

ExampleDesigner 

experimentdName Provides the human readable 
name of the experiment 

My Experiment 

experimentInvariantId Identifies a descriptor in a 
version independent manner. 

my_experiment 

appdid References the application 
descriptors of this experiment. 

- nginx-appd-001 
- busybox-appd-001 

 

Experiment Deployment Flavours (experimentDf) 

Defines one or more Deployment Flavours—similar to “profiles”—that group application profiles 

under a flavour key. 

 

Name Description Example 

experimentDfId unique within this descriptor. df_my_experiment 

flavourKey arbitrary tag (e.g., “small”, 
“test”). 

string 

appProfile List of app profile See below 

 

AppProfile 

Name Descriptionr Example 

appProfileId local reference for the profile. experiment_nginx_profile_1 

appdId link to the original application 
descriptor. 

nginx-appd-001 

appdExtInvariantId link to the original application 
descriptor. 

nginx-appd-extinv-001 

flavourId refer to the Application 
Descriptor own flavours. 

df_nginx 

instantiationLevel refer to the Application 
Descriptor own level. 

default_level 



 

 

Choose an item. 16 

minNumberOfInstances control scaling bounds. 1 

maxNumberOfInstance control scaling bounds. 1 

   

    Tip: Add additional experimentDf blocks if you need multiple experiment‐wide flavours. 

 

Experiment Instantiation Levels (experimentInstantionLevel) 

Maps profiles to actual instance counts for a given experiment level: 

 

Name Description Example 

nsLevelId Identifier of this NsLevel 
information element. It 
uniquely identifies an NS level 
within the DF. 

default_experiment_level 

descriptiorn Human readable description 
of the Experiment level 

Simple experiment level 

appToLevelMapping Specifies the profile of the 
Applications involved in this 
Experiment level and, for each 
of them, the required number 
of instances. 

See below 

nsLevelId: e.g., “default”, “scale-out”, etc. 

 

appToLevelMapping: ties each appProfileId to an exact replica count. 

Name Descriptiorn Example 

appProfileId References the profile to be 
used for a VNF involved in an 
NS level. 

experiment_nginx_profile_1 

numberOfInstance Specifies the number of VNF 
instances required for an NS 
level. 

1 

 

 

Tip: Define multiple levels (e.g., “stress_test_level”) to switch between configurations. 

 

Security 

Provides a signature section to prevent tampering 

Name Description Example 

signature cryptographic signature of the 
descriptor. 

<string> 

algorithm  SHA256 

certificate reference to a certificate 
(optional). 

 

   



 

 

Choose an item. 17 

 

 

 

 

  



 

 

Choose an item. 18 

4 Graphical User Interface 

This section provides an overview about the steps that an experimenter has to perform for 

interacting with the ENVELOPE Portal (i.e., the EaaS front-end). 

 

4.1 Applications 

The following steps illustrates the procedure for managing the applications that are part of an 

experiment.  

The screen is horizontally divided between an upper part for uploading and onboarding, and a 

lower area for retrieving and visualizing existing created or on-boarded application packages. 

 

 

 

 

  



 

 

Choose an item. 19 

1. Upload local zip file: click “Choose a file” and select from your filesystem the zip file for your 

application. Alternatively, drag & drop it into the light blue dotted border area. 

 

 

2. On-boarding an application package: a new UI dashboard shows up to manage the task. 

2.1. Click “Create” to request the creation of a new application package. 

Note: this Step does not involve the zip file uploaded in Step 1. It just initializes an 

empty application package, whose content may be uploaded later. 

 



 

 

Choose an item. 20 

2.2. After 2.1 is completed: 

2.2.1. “Upload” button becomes enabled, “Create” button becomes disabled. 

2.2.2. “On-boarding State” info tab switches to “Created”. 

2.2.3. A newly created package appears in the list of stored application packages. 

2.2.4. Click the “Upload” button to upload the application package created in 2.1. 

 

Note: The content of the zip file uploaded in Step 1 will be used for uploading the 

content of the application package created in Step 2.1. 

 

2.3 It's possible to "Delete” the zip file from client and its associated application package. 

 

 

 

  



 

 

Choose an item. 21 

2.4. After 2.2.4 is completed: 

2.4.1. “Upload” and “Create” buttons disappear. 

2.4.2. “On-boarding State” info tab switches to “On-boarded”. 

 

Note: the system will take a few seconds for on-boarding the package. 

Right after 2.2.4, the package will transition through the following states - 

“Created” → “Uploading” → “Processing” - before finally settling on “On-

boarded.” This final state appears immediately after the system completes 

the on-boarding process. 

 

        2.4.3 Can start again from Step 1. 

 

 

 

4.2 Experiments 

The screen is horizontally divided between an upper part for uploading and onboarding an 

experiment descriptor, and a lower area for retrieving and visualizing existing created, on-boarded 

and/or instantiated experiments (lifecycle). 

In the lower area, each experiment descriptor is represented as an expansible card; once 

expanded, it shows its created instances, with buttons to terminate each of those that are 

instantiated, or to instantiate those which are not. 

 



 

 

Choose an item. 22 

 

 

1. The creation and on-boarding process is the same as illustrated in Paragraph 2.1 

Applications. Following steps must be performed sequentially: 

1.1. Locally upload a zip file containing the desired experiment to onboard. 

1.2. Tap “Create” to create an Experiment Descriptor. 

1.3. Tap “Upload” to upload Experiment Descriptor Archive with the content of the 

zip file. 

  



 

 

Choose an item. 23 

2. The experiment now is shown listed in the lower screen area. 

2.1. Click “Create instance” to create an Experiment identifier. 

 

 

3. After 2.1: 

3.1. New experiment instance is created and visible  

3.2. Click “Instantiate” button to run the experiment instance 

  



 

 

Choose an item. 24 

4. After 3.2: 

  4.1. “Terminate” button is available. Click to stop the instance. 

 
 

4.3 Trial Sites Capabilities 

 

This section provides information about ENVELOPE APIs specification, Computing Nodes, 

Network Resources and Zones.  

 

 



 

 

Choose an item. 25 

The ENVELOPE APIs specifications supported can be retrieved and visualized using Swagger. 

 

 



 

 

Choose an item. 26 

4.4 Monitoring 

The trial site’s metrics and experimentation metrics are collected through Prometheus and they can 

be visualized in a Grafana dashboard. 

An example of monitoring dashboard is shown below. In this case, the visualisation focuses on 

network metrics, providing panels for packet forwarding and drop rates, as well as session and IP 

pool utilisation, or system resource usage. 

 

 

 

 

 


